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Abstract
We consider three fermions with two spin components interacting on a lattice
model with an infinite scattering length. Low-lying eigenenergies in a cubic
box with periodic boundary conditions, and for a zero total momentum, are
calculated numerically for decreasing values of the lattice period. The results
are compared to the predictions of the zero-range Bethe–Peierls model in
continuous space, where the interaction is replaced by contact conditions.
The numerical computation, combined with analytical arguments, shows the
absence of negative energy solution, and a rapid convergence of the lattice
model towards the Bethe–Peierls model for a vanishing lattice period. This
establishes for this system the universality of the zero-interaction range limit.

PACS numbers: 03.75.Ss, 05.30.Fk, 21.45.+v

Recent experimental progress has allowed to prepare a two-component Fermi atomic gas
in the BEC–BCS crossover regime and to study in the lab many of its physical properties,
such as the equation of state of the gas and other thermodynamic properties, the fraction of
condensed particles, the gap in the excitation spectrum corresponding to the breaking of a
pair, the superfluid properties and the formation of a vortex lattice, the effect of a population
imbalance in the two spin components and the corresponding possible quantum phases, . . .

[1–16].
The key to this impressive sequence of experimental results is the use of Feshbach

resonances [17]: an external magnetic field (B) permits to tune the two-body s-wave scattering
length a almost at will, to positive or negative values, so that one can, e.g. adiabatically
transform a weakly attractive Fermi gas into a Bose condensate of molecules. Interestingly,
close to the resonance, the scattering length diverges as a ∝ −1/(B − B0) so that the infinite
scattering length regime (|a| = ∞) can be achieved. When the typical relative momentum k
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of the particles further satisfies kb � 1, k|re| � 1, where b is the range and re the effective
range of the interaction potential, the s-wave scattering amplitude between two particles takes
the maximal modulus value fk = −1/(ik): this is the so-called unitary regime, where the gas
is strongly, and presumably maximally, interacting.

The unitary regime is achieved in present experiments for broad Feshbach resonances,
that is for resonances where the effective range re is of the order of the Van der Waals range of
the interatomic forces [18, 19]. Examples of s-wave broad resonances are given for 6Li atoms
by the one at B0 � 830 G [1, 4, 5, 7] or also for 40K atoms at B0 � 200 G [3]. On a more
theoretical point of view, the unitary regime has the striking property of being universal: e.g.,
the zero-temperature equation of state involves only h̄, the atomic mass m, the atomic density
and a numerical constant independent of the atomic species; this was checked experimentally,
this also appears in fixed node Monte Carlo simulations [20, 21] and more recently in exact
quantum Monte Carlo calculations [22–24].

In [22, 24], exact quantum Monte Carlo simulations at the unitary regime are performed
using a Hubbard model. From the condensed matter physics point of view, this modelling of
the system is a clever way to avoid the fermionic sign problem. But it is more than a theoretical
trick in the case of ultra-cold atoms, since it can be achieved experimentally by trapping atoms
at the nodes of an optical lattice in the tight-binding regime [25]. The Bethe–Peierls zero-range
model is another commonly used way of modelling the unitary regime: pairwise interactions
are replaced by contact conditions imposed on the many-body wavefunction [26–33]. This
model is very well adapted to analytical calculations in few-body problems [27, 32] but can
also be useful to predict many-body properties like time-dependent scaling solution [34], the
link between short-range scaling properties and the energy of the trapped gas [31], and hidden
symmetry properties [35] of the trapped gas.

However, there is to our knowledge no general rigorous result concerning the equivalence
between the discrete (Hubbard model) and the continuous (Bethe–Peierls) models for the
unitary gas. As a crucial example, one may wonder if there is any few- or many-body bound
state in a discrete model at the infinite scattering length limit. This is a non-trivial question,
since the infinite scattering length corresponds to an attractive on-site interaction in the discrete
model.

In this paper, we address this question for two and three fermions in a cubic box with
periodic boundary conditions, when the interaction range tends to zero for a fixed infinite
value of the scattering length. Our results for the equivalence of the lattice model and the
Bethe–Peierls approach are analytical for two fermions but still rely on a numerical step for
three fermions. In this few-body problem, the grid spacing can however be made very small in
comparison to the grids currently used in quantum Monte Carlo many-body calculations, thus
allowing a more precise study of the zero lattice step limit and a test of the linear scaling of
thermodynamic quantities with the grid spacing used in [22]. Our computations also exemplify
the remarkable property that short-range physics of the binary interaction does not play any
significant role in the unitary two-component Fermi gas, and the fact that the Bethe–Peierls
model is well behaved for three equal mass fermions.

Our model is the lattice model used in the quantum Monte Carlo simulations of [24]. It has
already been described in details in [36, 37] so that we recall here only its main features. The
positions ri of each particle i are discretized on a cubic lattice of period b. The Hamiltonian
contains the kinetic term of each particle, p2/2m, such that the plane wave of wave vector k
has an energy

εk = h̄2k2

2m
. (1)



Three fermions in a box at the unitary limit: universality in a lattice model 12865

Here, the wave vector is restricted to the first Brillouin zone of the lattice:

k ∈ D ≡ [−π/b, π/b[3. (2)

We enclose the system in a cubic box of size L with periodic boundary conditions, so that
the components {kα}α∈{x,y,z} of k are integer multiples of 2π/L. In what follows we shall,
for convenience, restrict our computations to the case where the ratio L/b = 2N + 1 is an
odd integer, so that kα = 2πnα/L with nα ∈ {−N,−N + 1, . . . , N}. The Hamiltonian also
contains the interaction potential between opposite spin fermions i and j , which is a discrete
delta on the lattice:

V (ri , rj ) = g0

b3
δri ,rj

. (3)

In [37], the matrix elements of the two-body T-matrix 〈k|T (E +i0+)|k′〉 for an infinite box size
are shown to depend only on the energy E, not on the plane wave momenta, which would imply
in a continuous space a pure s-wave scattering. The bare coupling constant g0 is then adjusted
in order to reproduce in the zero energy limit the desired value of the s-wave scattering length
a between two opposite spin particles [36, 37, 33]:

1

g0
− 1

g
= −

∫
D

d3k
(2π)3

1

2εk
= − mK

4πh̄2b
, (4)

where

K = 12

π

∫ π/4

0
dθ ln(1 + 1/ cos2 θ) = 2.442 749 . . . (5)

may be expressed in terms of the dilog function, and g = 4πh̄2a/m is the usual effective
s-wave coupling constant. From the calculated energy dependence of the T-matrix, one may
also extract the effective range re of the interaction in the lattice model; re is found to be
proportional to the lattice period, re � 0.337b [33], and the limit b → 0 is equivalent to the
limit of both zero range and zero effective range for the interaction3. As mentioned in the
introduction, this is the desired situation to reach the unitary limit when |a| = ∞.

We first solve the problem for two opposite spin fermions in the box, in the singlet
spin state |s〉 = (| ↑↓〉 − |↓↑〉)/√2, by looking for eigenstates of eigenenergy E with a
ket of the form |s〉 ⊗ |φ〉. We restrict to the case of a zero total momentum4, so that the
orbital part |φ〉 may be expanded on |k,−k〉 = |1 : k〉 ⊗ |2 : −k〉, where |1 : k〉 is the
normalized ket representing particle 1 with wave vector k. The corresponding wavefunction
is 〈r|k〉 = eik·r/L3/2. Schrödinger’s equation then reduces to

(2εk − E)〈k,−k|φ〉 +
g0

L3/2
〈r, r|φ〉 = 0, (6)

where the last term does not depend on a common position r of the two particles. A first
type of eigenstates corresponds to 〈r, r|φ〉 = 0: these eigenstates have a zero probability to
have two particles at the same point, and are also eigenstates of the non-interacting case. An
example of such a state with the correct exchange symmetry is given by the wavefunction

φ(r1, r2) ∝ cos

[
2π

L
(x1 − x2)

]
− cos

[
2π

L
(y1 − y2)

]
. (7)

We are interested here in the states of the second type, what we call ‘interacting’ states,
such that 〈r, r|φ〉 �= 0. Treating the interacting term in equation (6) as a source term, one

3 In contrast, in a two-channel model for a Feshbach resonance, one finds that the effective range has a finite (and
negative) limit in the zero-potential range limit (the so-called narrow Feshbach resonance limit) [33].
4 One thus cannot conclude that the corresponding minimal eigenenergy is the absolute ground state energy.
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Figure 1. First three eigenenergies for the interacting states of two fermions in a box of size
L for an infinite scattering length in the lattice model, as functions of the lattice period b. The
total momentum of the eigenstates is fixed to zero. The computed eigenenergies are given by the
plotting symbols, in units of E0 = (2πh̄)2/2mL2; the straight lines are linear fits performed on
the data with b/L < 2 × 10−2.

expresses |φ〉 in terms of 〈r, r|φ〉 and a sum over k. Projecting the resulting expression onto
|r, r〉 leads to a closed equation (now E �= 2εk)

1

g0
+

1

L3

∑
k∈D

1

2εk − E
= 0. (8)

The resulting implicit equation for E, of the form u(E) = 0, where u(E) is the left-hand side
of equation (8), is then readily solved numerically; to this end, one notes that u(E) has poles
in each E = 2εk, and that it varies monotonically from −∞ to +∞ between two poles, so that
u(E) vanishes once and only once between two successive values of 2εk. In figure 1, we show
for |a| = ∞ the first low-lying eigenenergies as functions of the lattice spacing; one observes
a convergence to finite values in the b/L → 0 limit, with a first correction scaling as b/L. A
rewriting of the implicit equation for E that will reveal convenient in the b = 0 limit is

πL

a
= (2πh̄)2

mL2

[
1

E
+

∑
k∈D−0

(
1

E − 2εk

+
1

2εk

)]
+ C(b), (9)

where the function C(b) is defined by

C(b) = (2πh̄)2L

2m

(∫
D

d3k
(2π)3

1

εk
− 1

L3

∑
k∈D−0

1

εk

)
, (10)

and has a finite limit for b → 0 which is given by C(0) � 8.913 64.

We now briefly check that the b = 0 limit in equation (9) coincides with the prediction
of the Bethe–Peierls model, which is a continuous space model where one replaces the
interaction potential by the following contact conditions on the wavefunction [26–33]: there
exists a function S(R) such that

φ(r1, r2) = S(R)

(
1

r
− 1

a

)
+ O(r), (11)

where r = |r1 − r2| → 0 is the distance between the two particles and the centre of mass
position R = (r1 + r2)/2 is fixed. At positions r1 �= r2, the wavefunction solves the free
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Schrödinger equation. Using this model we arrive at an implicit equation for the energy of an
interacting state exactly of the form obtained by taking the b = 0 limit in equation (9), except
that the constant C(0) in the right-hand side is replaced by5

CBP = lim
σ→0


∫

d3u
e−u2σ 2

u2
−

∑
n∈Z

3∗

e−n2σ 2

n2


 . (12)

We expect the identity CBP = C(0) from the general result that the Bethe–Peierls model for
the two-body problem reproduces the zero range limit of a true interaction potential [28, 38].
It is however instructive to check this property explicitly for the lattice model. One can show
that

CBP − C(0) = lim
σ→0

∑
n∈Z

3∗

∫
I

d3u[hσ (n + u) − hσ (n)], (13)

where hσ (q) = [exp(−q2σ 2) − 1]/q2 and the integration domain is I = [−1/2, 1/2]3. The
desired identity C(0) = CBP results from the fact that one can exchange the σ = 0 limit and
the summation over n in the above equation [39]6.

In the lattice model, it is possible to show analytically that the spectrum of the two-body
problem for an infinite scattering length is bounded from below in the b → 0 limit. Since
g0 < 0 for |a| = ∞, there exists at least one non-positive energy solution, by a variational
argument. One then notes that the right-hand side in equation (9) is a strictly decreasing
function of E over ]−∞, 0[ that tends to −∞ in E = 0−, so that at most one negative energy
solution may exist. Furthermore, one can show that the b → 0 limit of the right-hand side
tends to +∞ when E → −∞7, whence this negative energy solution is finite8.

We now turn to the problem of three interacting fermions in the box. Schrödinger’s
equation is obtained without loss of generality by considering the particular spin component
(1:↑; 2:↑; 3:↓), so that the interaction takes place only among the pairs (1, 3) and (2, 3), and
in the lattice model one obtains[

3∑
i=1

p2
i

2m
+

g0

b3

(
δr1,r3 + δr2,r3

) − E

]
ψ(r1, r2, r3) = 0. (14)

5 Usually, one expresses the Green function of the Laplacian in a cubic box in terms of plane waves. This leads to
CBP = limx→0 v(x), with v(x) = ∫

d3u exp(iu · x)/u2 − ∑
n∈Z

3∗ exp(in · x)/n2. This definition of v(x) should be
understood within the frame of the theory of distributions. We define the x = 0 limit of v(x) as the limit for σ → 0
of

∫
d3xv(x)φ(x/σ)/σ 3, where φ is a C∞ rapidly decreasing function with

∫
d3xφ(x) = 1. In equation (12) we have

taken for simplicity φ to be a Gaussian, but we have shown that CBP is independent of this choice.
6 One uses the rewriting hσ (n + u) − hσ (n) = T1 + T2, with T1 = [φ̂[σ(n + u)] − φ̂(σn)]/(n + u)2, T2 =
[φ̂(σn) − 1][1/(n + u)2 − 1/n2] and φ̂(x) = exp(−x2). Using a large n expansion, one finds that the integral of T2
over the symmetric integration domain I is O(1/n4), so that the theorem of dominated convergence applies. For T1,
one uses the Taylor–Lagrange formula up to second order for the numerator: for a given u, there exists a vector xu on
the line connecting σn and σ(n + u) such that φ̂[σ(n + u)] − φ̂(σn) = ∑

i σui∂i φ̂(σn) + 1
2

∑
i,j σ 2uiuj ∂i∂j φ̂(xu).

The term involving the first-order derivatives of φ̂ vanishes after integration over u. Since the second-order derivatives
of φ̂(x) are rapidly decreasing functions, they are in particular � A/x2 at large x for some number A, so that the
integral of T1 over I is bounded by A/n4 and the theorem of dominated converge applies again.
7 One uses the fact that for n ∈ N

∗, ε/[n2(n2 + ε)] is positive when ε > 0, and tends to 1/n2 for ε → +∞. The fact
that

∑
n∈Z

3∗ 1/n2 = +∞ gives the result.
8 In the limit b → 0, there exists a negative energy solution E < 0 for all a. Its energy can be calculated
accurately directly from the Bethe–Peierls model from a more convenient representation of the function v(x) in
footnote 5, using Poisson’s summation formula applied to the function u → eiu · x/(u2 + λ2) where λ > 0 is arbitrary.
One obtains CBP = λ−2 + 2π2λ − ∑

n∈Z
3∗ [λ2n−2(λ2 + n2)−1 + π exp(−2πλn)/n], an expression whose value does

not depend on λ. Specializing to the unitary limit, and taking λ = α/(2π), where α = 1.945 766 . . . solves
α = ∑

n∈Z
3∗ exp(−αn)/n, one finds a minimal eigenenergy E = −α2h̄2/mL2.
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We restrict to a zero total momentum modulo 2π/b along each direction (see footnote 4); using
the fermionic antisymmetry condition for the transposition of particles 1 and 2, we express
the part of equation (14) involving the interaction in terms of a function of the position of a
single particle:

ψ(r1, r2, r1) = f (r2 − r1) (15)

ψ(r1, r2, r2) = −f (r1 − r2). (16)

We then project equation (14) on the plane waves in the box, which leads to

〈k1, k2, k3|ψ〉 = g0δ
mod
k1+k2+k3,0

E − εk1 − εk2 − εk3

(
fk2 − fk1

)
, (17)

where δmod is a discrete delta modulo 2π/b along each direction, and where the Fourier
transform of f (r) is defined as

fk = 〈k|f 〉 = b3

L3/2

∑
r∈[0,L[3

exp(−ik · r)f (r). (18)

Replacing f (r) in the right-hand side of this equation by its expression in terms of
〈k1, k2, k3|ψ〉 deduced from equation (15), we obtain a closed equation for fk:

L3

g0
fk = fk

∑
q∈D

ak,q −
∑
q∈D

ak,qfq, (19)

where we have introduced the matrix

ak,q = 1

E − εk − εq − ε[k+q]FBZ

, (20)

and for an arbitrary wave vector u, [u]FBZ denotes the vector in the first Brillouin zone that
differs from u by integer multiples of 2π/b along each direction. The eigenvalues E of the
three-body problem are such that the linear system (19) admits a non-identically vanishing
solution fk, that is the determinant of this linear system is zero. Note that from equation (19),
one has f (0) ∝ ∑

q∈D fk = 0, a consequence of the Pauli exclusion principle.
For |a| = ∞, we have computed numerically the first eigenenergies of the system, by

calculating the determinant as a function of E. In figure 2, we give these eigenenergies as
functions of the ratio b/L. A rapid convergence in the zero-b limit is observed, with a linear
dependence in b/L.

This rapid convergence illustrates the fact that equal mass fermions easily exhibit universal
properties, as revealed by experiments; here b plays the role of the finite Van der Waals range
of the true potential (given by (mC6/h̄

2)1/4, where C6 is the Van der Waals coefficient), and L
is of the order of the mean interparticle distance in a real gas. As an example, for 6Li atoms
b ∼ 3 nm and in experiments for the broad Feshbach resonance in the s-wave channel at
∼830 G the atomic density is of the order of 1013 cm−3, so that the ratio b/L is of the order
of 10−2 which is well within the zero-b limit.

The absence of negative three-body eigenenergies in the unitary limit can be obtained
numerically very efficiently through a formal analogy between equation (19) and a set of rate
equations on fictitious occupation numbers of the single particle modes in the box. Assuming
E � 0, we note �k the fictitious occupation number in the mode k and �k→q = g0aq,k/L

3 the
transition rate from the mode k to the mode q. From equation (20), one obtains the property
�k→q = �q→k, and the rate equation can be written as

d�k

dt
= −


∑

q �=k

�k→q


 �k +

∑
q �=k

�q→k�q. (21)
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Figure 2. First eigenenergies of three fermions in a box of size L for an infinite scattering length
in the lattice model, for a zero total momentum. The computed eigenenergies (diamonds) are
given in units of E0 = (2πh̄)2/2mL2 for different values of the lattice period b. For functions
f (r) invariant by reflection along x, y, z and by arbitrary permutation of x, y, z we have computed
the eigenenergies down to smaller values of b/L. The straight lines are a linear fit performed on
the data over the range b/L � 1/15, except for the energy branch E � 2.89E0 which becomes
more slowly linear than the other branches. The eigenenergies predicted by the Bethe–Peierls
model are given by stars in b = 0.

The symmetric matrix M(E), which defines the first-order linear system in equation (21),
dΠ/dt = M(E)Π, has the following properties: (i) its eigenvalues are non-positive, since it
is a set of rate equations; (ii) its eigenvalues are decreasing function of the energy E, which
can be deduced from the fact that dM(E)/dE is a matrix of rate equations and obeys property
(1), and from the Hellman–Feynman theorem; and (iii) eigenmodes of equation (21) with an
eigenvalue equal to −1 correspond to solutions fk of equation (19) with �k = fk exp(−t).
Therefore, in order to check that there is no nonzero solution of equation (19) for E < 0, it is
sufficient to check that all eigenvalues of M(E = 0) are strictly larger than −1.

We have computed the lowest eigenvalue m0 of the matrix M(E = 0) as a function of
the ratio b/L. A fit of m0 as a function of b/L suggests limb→0 m0 � −1. To better see
what happens in the zero-(b/L) limit, we note that having m0 > −1 is equivalent to having
(m0 + 1)/g0 < 0, or more simply (m0 + 1)/(b/L) > 0. We have thus plotted in figure 3 the
ratio (m0 + 1)/(b/L), which is seen to tend to a positive value for b → 0,� 1.085, with a
negative slope; this excludes the existence of negative eigenenergies for the three fermions at
infinite scattering length even in the small b limit9.

9 One may fear at this stage that an eigenvalue mx of M(E = 0), although not being the lowest one for the values of
b/L considered in the figure, may be such that (mx + 1)/(b/L) varies rapidly with b/L, e.g. with a large and positive
slope, so as to converge for b/L → 0 to a lower value than 1.08. To test this possibility, we have considered the
lowest twenty eigenvalues of M(E = 0) in each symmetry sector with respect to reflections along x, y, z. All these
eigenvalues mi are found to lead to (mi + 1)/(b/L) having a negative slope as functions of b/L and converging for
b/L → 0 to values � 2.13, 2.27, 2.51, . . ., larger than 1.08.
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Figure 3. Quantity (m0 + 1)/(b/L) as a function of the lattice period b. Here m0 is the lowest
eigenvalue of the matrix M(E) defining the linear system equation (21), for E = 0 and for an
infinite scattering length. The fact that m0 + 1 > 0 shows that there is no negative eigenenergy for
the three fermions (see the text). The symbols are obtained from a numerical calculation of m0.
The solid line is a linear fit over the range b/L � 1/29, not including the point with b/L = 1/81:
for this point, the matrix M has more than half a million lines so that m0 was obtained by a computer
memory-saving iterative method rather than by a direct diagonalization.

In a last step, we compare the results of the lattice model to the predictions of the
Bethe–Peierls approach for three fermions in a continuous space, which was shown to be a
successful model in free space [29, 30] and in a harmonic trap at the unitary limit [32]. For
this purpose, we introduce the function Fk which is the Fourier transform of the regular part
of the wavefunction as |r1 − r3| → 0,

F(R) = lim
r→0

[
rψ

(
R +

r
2
, 0, R − r

2

)]
, (22)

where we have used the translational invariance. By reproducing a calculation procedure
analogous to what we have done for the lattice model, we obtain the following infinite-
dimension linear system:

L3

g
Fk = Fk


Ak,0 +

∑
q �=0

(
Ak,q +

1

2εq

)
+

mL2CBP

(2πh̄)2


 −

∑
q

Ak,qFq, (23)

where the wave vectors k and q now run over the whole space (2π/L)Z3, and

Ak,q = 1

E − εk − εq − εk+q
. (24)

The similarity between the structure of (19) and (23) is apparent. Numerically, at |a| = ∞,
we have verified the convergence between the two models as b → 0 in equation (19) (see
figure 2). Analytically, one can even formally check the equivalence between the two sets
of equations (19) and (23): first, we eliminate the integral of 1/εk between (4) and (10), to
express 1/g0 in terms of 1/g and C(b). Second, we replace 1/g0 by the resulting expression
in equation (19). Third, we take the limit b → 0: we exactly recover the system (23).
Hence, if the eigenenergy E and the corresponding function f in the lattice model have a
well-defined limit for b = 0, this shows that the limit is given by the Bethe–Peierls model.
Of course, the real mathematical difficulty is to show the existence of the limit, in particular
for all eigenenergies. This property is not granted: for example, the present lattice model
generalized to the case of a ↓ particle of a mass m3 different from the mass m of the two
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↑ particles leads, for a large enough mass ratio m/m3, to a three-body energy spectrum not
bounded from below in the b = 0 limit, even though the Pauli exclusion principle prevents
from having the three particles on the same lattice site10.

In conclusion, we have computed numerically the low-lying eigenenergies of three spin-
1/2 fermions in a box, interacting with an infinite scattering length in a lattice model, for a zero
total momentum and for decreasing values of the lattice period. Our results show numerically
the equivalence between this model and the Bethe–Peierls approach in the limit of zero lattice
period. This is related to the fact that the eigenenergies E are bounded from below in the zero
lattice period limit b → 0, more precisely E > 0. Such a convergence of the eigenstates of
fermions in a lattice model towards universal states when b → 0 is a key property used in
Monte Carlo simulations at the N-body level [22–24].
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